REACTION OF CHLORO-

DIALKOXYPHOSPHORYL-

ACETALDEHYDES

WITH 2-AMINOPYRIDINES

F. I. Guseinov, Kh. A. Asadov, R. N. Burangulova, and V. V. Moskva

Keywords: 2-aminopyridine, 3-phosphorylimidazo[1,2-*a*]pyridine, chlorophosphorylacetaldehydes, hemiaminals.

We have discovered that the reactions of chlorophosphorylacetaldehydes 1 and 3 with substituted 2-aminopyridines lead to various products, depending on the structure of the aldehyde.

The reactions of chloro aldehyde **1** with 2-aminopyridine lead to heterocyclization and formation of the 3-phosphorylimidazo[1,2-*a*]pyridines hydrochlorides **2a** and **2b** in 80-85% yield.

$$(i-PrO)_{2}P \xrightarrow{\text{CHO}} + Y \xrightarrow{\text{X}} Y \xrightarrow{\text{Y}} Cl^{-}$$

$$1 \xrightarrow{\text{CI}} NH_{2} \xrightarrow{\text{NH}_{2}} (i-PrO)_{2}P(O) \xrightarrow{\text{H}} 2a,b$$

2 a X = Me, Y = H; **b** X = H, Y = Cl

We have previously shown that phenylphosphoryl aldehydes 3 react with nitrogen- and sulfur-containing bi- and polyfunctional nucleophilic reagents and undergo heterocyclization [1]. However, the expected heterocyclization in the reaction of chlorophenylphosphorylacetaldehyde 3 with 2-amino-4-methylpyridine in acetonitrile or ethanol does not occur. The reaction proceeds only at the aldehyde group and leads to hemiaminals 4a and 4b.

(EtO)₂P Cl
$$\rightarrow$$
 Cl \rightarrow NH₂ \rightarrow MeCN \rightarrow OR NH₂ \rightarrow Aa,b \rightarrow Aa R = H; b R = Et

Kazan State Technological University, 420015 Kazan, Russia; e-mail: eltos@Kai.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1139-1140, August, 2001. Original article submitted February 27, 2001.

The structures of **4a** and **4b** were demonstrated by ¹H and ³¹P NMR spectroscopy and confirmed by X-ray diffraction structural analysis. The results of the X-ray diffraction study will be published separately.

3-Diisopropoxyphosphoryl-6-methylimidazo[1,2-a]pyridine Hydrochloride (2a). A mixture of aldehyde 1 (0.49 g, 2 mmol) and 2-amino-4-methylpyridine (0.22 g, 2 mmol) in ethanol (30 ml) was heated at reflux for 10 h. The solvent was evaporated and 10 ml 1:1 acetonitrile—ether was added. The crystalline precipitate was filtered off and recrystallized from acetonitrile to give 0.54 g (80%) 2a; mp 144-145°C. IR spectrum, v, cm⁻¹: 1280, 1635, 3300. ³¹P NMR spectrum, δ , ppm: 10.5. ¹H NMR spectrum ((CD₃)₂CO), δ , ppm: 1.10 (12H, t, 4CH₃); 2.30 (3H, s, CH₃); 4.70 (2H, m, 2OCH); 6.80 (1H, d, 5-H); 6.90 (1H, br. s, NH); 7.00 (1H, d, 7-H); 8.10 (1H, d, 4-H); 8.60 (1H, d, =CH—). Found, %: Cl 10.43; N 8.77; P 9.32. C₁₄H₂₂ClN₂O₃P. Calculated, %: Cl 10.67; N 8.42; P 9.32.

5-Chloro-3-diisopropoxyphosphorylimidazo[1,2-*a*]pyridine Hydrochloride (2b) was obtained analogously in 85% yield; mp 177-179°C (acetonitrile). IR spectrum, ν , cm⁻¹: 1280, 1640, 3300. ³¹P NMR spectrum, δ, ppm: 10.53. ¹H NMR spectrum ((CD₃)₂CO), δ, ppm: 1.20 (12H, t, 4CH₃); 2.30 (3H, s, CH₃); 4.70 (2H, m, 2OCH); 6.80 (1H, d, 7-H); 7.00 (1H, br. s, NH); 7.60 (1H, dd, 6-H); 8.20 (1H, d, 4-H); 8.30 (1H, d, =CH–). Found, %: Cl 19.45; N 9.25; P 8.78. C₁₃H₁₉Cl₂N₃O₃P. Calculated, %: C 20.11; N 7.93; P 8.78.

Diethyl Ester of 1-Chloro-2-hydroxy-2-(4-methyl-2-pyridyl)amino-1-phenylethylphosphonic Acid (4a). A mixture of aldehyde **3** (0.58 g, 2 mmol) and 2-amino-4-methylpyridine (0.22 g, 2 mmol) in acetonitrile (20 ml) was heated at reflux for 10 h. The solvent was evaporated. The precipitate was recrystallized from ethanol to give 0.66 g (82%) **4a**; mp 136-137°C. IR spectrum, ν , cm⁻¹: 1285, 3200, 3340. ³¹P NMR, δ, ppm: 18.35, 18.47. ¹H NMR spectrum ((CD₃)₂CO), δ, ppm: 1.15 (6H, m, 2CH₃); 2.10 (3H, d, CH₃); 4.00 (4H, m, 2OCH₂); 5.20 (1H, d, OCH); 6.50 (1H, d, 5-H); 6.90 (1H, br. s, NH); 7.30 (1H, d, 3-H); 7.75 (5H, m, Ph); 7.90 (1H, d, 6-H); 9.80 (1H, br. s, OH). Found, %: Cl 8.86; N 7.08; P 7.75. C₁₈H₂₄ClN₂O₄P. Calculated, %: Cl 8.91; N 7.03; P 7.78.

Diethyl Ester of 1-Chloro-2-ethoxy-2-(4-methyl-2-pyridyl)amino-1-phenylethylphosphonic Acid (4b). A mixture of aldehyde **3** (0.58 g, 2 mmol) and 2-amino-4-methylpyridine (0.22 g, 2 mmol) in ethanol (30 ml) was heated at reflux for 12 h. The solvent was evaporated and 10 ml 1:1 ether–hexane was added to the reaction mixture. The precipitate formed was filtered off and recrystallized from acetonitrile to give 0.74 g (87%) **4b**; mp 140-142°C. IR spectrum, v, cm⁻¹: 1150, 1280, 3200. ³¹P NMR spectrum, δ , ppm: 17.2, 18.1. ¹H NMR spectrum ((CD₃)₂CO), δ , ppm: 1.10 (9H, m, 3CH₃); 2.20 (3H, d, CH₃); 4.00 (6H, m, 3OCH₂); 5.30 (1H, d, OCH); 6.50 (1H, d, 5-H); 6.80 (1H, br. s, NH); 7.30 (1H, d, 3-H); 7.70 (5H, m, Ph); 7.90 (1H, d, 6-H). Found, %: Cl 8.34; N 6.61; P 7.32. C₂₀H₂₈ClN₂O₄P. Calculated, %: Cl 8.32; N 6.56; P 7.27.

REFERENCES

1. F. I. Guseinov, Kh. A. Asadov, and R. N. Burangulova, in: *A. N. Kost Memorial First All-Russian Conference on Heterocyclic Chemistry* [in Russian], Suzdal, Russia (2000), p. 449.